Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 983
Filtrar
1.
Sci Rep ; 14(1): 9848, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684744

RESUMO

Pathological data showed focal inflammation and regions of diffuse neuronal loss in the cortex of people with multiple sclerosis (MS). In this work, we applied a novel model ("soma and neurite density imaging (SANDI)") to multishell diffusion-weighted MRI data acquired in healthy subjects and people with multiple sclerosis (pwMS), in order to investigate inflammation and degeneration-related changes in the cortical tissue of pwMS. We aimed to (i) establish whether SANDI is applicable in vivo clinical data; (ii) investigate inflammatory and degenerative changes using SANDI soma fraction (fsoma)-a marker of cellularity-in both cortical lesions and in the normal-appearing-cortex and (iii) correlate SANDI fsoma with clinical and biological measures in pwMS. We applied a simplified version of SANDI to a clinical scanners. We then provided evidence that pwMS exhibited an overall decrease in cortical SANDI fsoma compared to healthy subjects, suggesting global degenerative processes compatible with neuronal loss. On the other hand, we have found that progressive pwMS showed a higher SANDI fsoma in the outer part of the cortex compared to relapsing-remitting pwMS, possibly supporting current pathological knowledge of increased innate inflammatory cells in these regions. A similar finding was obtained in subpial lesions in relapsing-remitting patients, reflecting existing pathological data in these lesion types. A significant correlation was found between SANDI fsoma and serum neurofilament light chain-a biomarker of inflammatory axonal damage-suggesting a relationship between SANDI soma fraction and inflammatory processes in pwMS again. Overall, our data show that SANDI fsoma is a promising biomarker to monitor changes in cellularity compatible with neurodegeneration and neuroinflammation in the cortex of MS patients.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Biomarcadores , Neuritos/patologia , Inflamação/patologia , Inflamação/diagnóstico por imagem
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378084

RESUMO

Alzheimer's disease (AD) is characterized by the formation ß-amyloid (Aß) deposited neuritic plaques. Recent evidence suggests that abnormal lipid metabolism and accumulation could serve as biomarkers for neurodegenerative diseases, including AD. Tubular endoplasmic reticulum protein, reticulon 3 (RTN3), plays a crucial role in the development of neuritic plaque and lipid metabolism in AD brains. In present study, we sought to investigate a potential association between neutral lipid accumulation and AD pathology. BODIPY 500/510 dye was used to label neutral lipid surrounding Aß plaques in APPNL-G-F mouse and AD postmortem brains samples. Immunofluorescent images were captured using confocal microscope and co-localization between lipid metabolism proteins and neutral lipids were evaluated. Lipid accumulation in Aß plaque surrounding dystrophic neurites (DNs) was observed in the cortical region of AD mouse models and human AD brain samples. The neutral lipid staining was not co-localized with IBA1-labeled microglia or GFAP-labeled astrocytes, but it was co-labeled with VAMP2 and neurofilament. We further showed that neutral lipids were accumulated in RTN3 immunoreactive DNs. Both the neutral lipids accumulation and RIDNs formation showed age-dependent patterns in surrounding amyloid plaques. Mechanistic studies revealed that RTN3 likely contributes to the enrichment of neutral lipids near plaques by interacting with heat shock cognate protein 70 (HSC70) and diminishing its function in chaperone-mediated lipophagy. Our study provides immunohistochemical evidence of neutral lipids being enriched in DNs near amyloid plaques. Our findings shed light on RTN3-mediaed lipid accumulation in AD neuropathology and provide fresh insights into the role of RTN3 in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/metabolismo , Neuritos/patologia , Placa Amiloide/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Lipídeos
3.
J Magn Reson Imaging ; 59(1): 242-252, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37183807

RESUMO

BACKGROUND: Cognitive impairment frequently occurs in patients with brain metastases (BM) after whole-brain radiotherapy (WBRT). It is crucial to explore the underlying mechanisms of cognitive impairment in BM patients receiving WBRT. PURPOSE: To detect brain microstructural alterations in patients after WBRT by neurite orientation dispersion and density imaging (NODDI), and evaluate the performance of microstructural alterations in predicting cognitive impairment. STUDY TYPE: Prospective. POPULATION: Twenty-six patients (seven female; mean age, 60.9 years). FIELD STRENGTH/SEQUENCE: 3-T, multi-shell diffusion-weighted single-shot echo-planar sequence. Three-dimensional magnetization-prepared rapid acquisition with gradient echo sequence. ASSESSMENT: Mini-mental state examination (MMSE) evaluations were conducted prior to, following, 1 and 3 months after WBRT. The diffusion data were collected twice, 1 week before and 1 week after WBRT. NODDI analysis was conducted to assess microstructural alterations in whole brain (orientation dispersion index, neurite density index, volume fraction of isotropic water molecules). Reliable change indices (RCI) of MMSE were used to measure cognitive decline. The performance of support vector machine models based on NODDI parameters and clinical features (prednisone usage, tumor volume, etc.) in predicting MMSE-RCI was evaluated. STATISTICAL TESTS: Paired t-test to assess alterations of NODDI measures and MMSE during follow-up. Statistical significance level of P-value <0.05. RESULTS: Significantly decreased MMSE score was found at 3 months after WBRT. After WBRT, corpus callosum, medial prefrontal cortex, limbic lobe, occipital lobe, parietal lobe, putamen, globus pallidus lentiform, and thalamus demonstrated damage in NODDI parameters. The predicted MMSE-RCI based on NODDI features was significantly associated with the measured MMSE-RCI at 1 month (R = 0.573; P = 0.003) and 3 months (R = 0.687; P < 0.0001) after WBRT. DATA CONCLUSION: Microstructural alterations in several brain regions including the middle prefrontal and limbic cortexes were observed in patients with BM following WBRT, which may contribute to subsequent cognitive decline. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Disfunção Cognitiva , Humanos , Feminino , Pessoa de Meia-Idade , Neuritos/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Estudos Prospectivos , Irradiação Craniana , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia
4.
BMC Cancer ; 23(1): 1231, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098041

RESUMO

BACKGROUND: We created discriminative models of different regions of interest (ROIs) using radiomic texture features of neurite orientation dispersion and density imaging (NODDI) and evaluated the feasibility of each model in differentiating glioblastoma multiforme (GBM) from solitary brain metastasis (SBM). METHODS: We conducted a retrospective study of 204 patients with GBM (n = 146) or SBM (n = 58). Radiomic texture features were extracted from five ROIs based on three metric maps (intracellular volume fraction, orientation dispersion index, and isotropic volume fraction of NODDI), including necrosis, solid tumors, peritumoral edema, tumor bulk volume (TBV), and abnormal bulk volume. Four feature selection methods and eight classifiers were used for the radiomic texture feature selection and model construction. Receiver operating characteristic (ROC) curve analysis was used to evaluate the diagnostic performance of the models. Routine magnetic resonance imaging (MRI) radiomic texture feature models generated in the same manner were used for the horizontal comparison. RESULTS: NODDI-radiomic texture analysis based on TBV subregions exhibited the highest accuracy (although nonsignificant) in differentiating GBM from SBM, with area under the ROC curve (AUC) values of 0.918 and 0.882 in the training and test datasets, respectively, compared to necrosis (AUCtraining:0.845, AUCtest:0.714), solid tumor (AUCtraining:0.852, AUCtest:0.821), peritumoral edema (AUCtraining:0.817, AUCtest:0.762), and ABV (AUCtraining:0.834, AUCtest:0.779). The performance of the five ROI radiomic texture models in routine MRI was inferior to that of the NODDI-radiomic texture model. CONCLUSION: Preoperative NODDI-radiomic texture analysis based on TBV subregions shows great potential for distinguishing GBM from SBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Estudos Retrospectivos , Neuritos/patologia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Edema , Necrose
5.
Hum Brain Mapp ; 44(16): 5485-5503, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615057

RESUMO

The hippocampus is classically divided into mesoscopic subfields which contain varying microstructure that contribute to their unique functional roles. It has been challenging to characterize this microstructure with current magnetic resonance based neuroimaging techniques. In this work, we used diffusion magnetic resonance imaging (dMRI) and a novel surface-based approach in the hippocampus which revealed distinct microstructural distributions of neurite density and dispersion, T1w/T2w ratio as a proxy for myelin content, fractional anisotropy, and mean diffusivity. We used the neurite orientation dispersion and density imaging (NODDI) model optimized for grey matter diffusivity to characterize neurite density and dispersion. We found that neurite dispersion was highest in the cornu ammonis (CA) 1 and subiculum subfields which likely captures the large heterogeneity of tangential and radial fibres, such as the Schaffer collaterals, perforant path, and pyramidal neurons. Neurite density and T1w/T2w were highest in the subiculum and CA3 and lowest in CA1, which may reflect known myeloarchitectonic differences between these subfields. Using a simple logistic regression model, we showed that neurite density, dispersion, and T1w/T2w measures were separable across the subfields, suggesting that they may be sensitive to the known variability in subfield cyto- and myeloarchitecture. We report macrostructural measures of gyrification, thickness, and curvature that were in line with ex vivo descriptions of hippocampal anatomy. We employed a multivariate orthogonal projective non-negative matrix factorization (OPNNMF) approach to capture co-varying regions of macro- and microstructure across the hippocampus. The clusters were highly variable along the medial-lateral (proximal-distal) direction, likely reflecting known differences in morphology, cytoarchitectonic profiles, and connectivity. Finally, we show that by examining the main direction of diffusion relative to canonical hippocampal axes, we could identify regions with stereotyped microstructural orientations that may map onto specific fibre pathways, such as the Schaffer collaterals, perforant path, fimbria, and alveus. These results highlight the value of combining in vivo dMRI with computational approaches for capturing hippocampal microstructure, which may provide useful features for understanding cognition and for diagnosis of disease states.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Neuroimagem/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Substância Cinzenta , Neuritos/patologia , Substância Branca/patologia
6.
Brain Behav Immun ; 113: 124-135, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37394144

RESUMO

BACKGROUND: Data from human studies suggest that immune dysregulation is associated with Alzheimer's disease (AD) pathology and cognitive decline and that neurites may be affected early in the disease trajectory. Data from animal studies further indicate that dysfunction in astrocytes and inflammation may have a pivotal role in facilitating dendritic damage, which has been linked with negative cognitive outcomes. To elucidate these relationships further, we have examined the relationship between astrocyte and immune dysregulation, AD-related pathology, and neuritic microstructure in AD-vulnerable regions in late life. METHODS: We evaluated panels of immune, vascular, and AD-related protein markers in blood and conducted in vivo multi-shell neuroimaging using Neurite Orientation Dispersion and Density Imaging (NODDI) to assess indices of neuritic density (NDI) and dispersion (ODI) in brain regions vulnerable to AD in a cohort of older adults (n = 109). RESULTS: When examining all markers in tandem, higher plasma GFAP levels were strongly related to lower neurite dispersion (ODI) in grey matter. No biomarker associations were found with higher neuritic density. Associations between GFAP and neuritic microstructure were not significantly impacted by symptom status, APOE status, or plasma Aß42/40 ratio; however, there was a large sex effect observed for neurite dispersion, wherein negative associations between GFAP and ODI were only observed in females. DISCUSSION: This study provides a comprehensive, concurrent appraisal of immune, vascular, and AD-related biomarkers in the context of advanced grey matter neurite orientation and dispersion methodology. Sex may be an important modifier of the complex associations between astrogliosis, immune dysregulation, and brain microstructure in older adults.


Assuntos
Doença de Alzheimer , Substância Branca , Animais , Humanos , Feminino , Idoso , Neuritos/patologia , Imagem de Tensor de Difusão/métodos , Gliose/patologia , Encéfalo/patologia , Neuroimagem/métodos , Doença de Alzheimer/patologia , Substância Branca/patologia , Imagem de Difusão por Ressonância Magnética
7.
J Neuroimaging ; 33(4): 644-651, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37170070

RESUMO

BACKGROUND AND PURPOSE: Conventional MRI sequences in neuro-oncology are insufficient for glioma grading. However, newly developed diffusion-weighted imaging techniques have been shown to have a great potential for glioma grading. This study examined the diagnostic performance of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and their combinations in glioma grading. METHODS: Multishell diffusion tensor images were obtained with 3T MRI in 38 glioma patients (22 high-grade glioma [HGG], 16 low-grade glioma [LGG]). DTI (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], radial diffusivity [RD]), DKI (Axial kurtosis [AK], mean kurtosis [MK], radial kurtosis [RK]), and NODDI (intracellular volume fraction [ICVF], orientation distribution index, isotropic water fraction [ISO]) images were obtained after preprocessing. The average value of these parameters was calculated in the solid components of the tumors. The receiver operating characteristic curve analyses were performed to investigate the diagnostic performance and the curves were compared with the Delong test. RESULTS: FA shows an increase in HGG, while MD, RD, and AD exhibit a decrease. AK, MK, and RK were higher in HGG than LGG. ICVF increased in HGG, while ISO decreased. AK demonstrated the best diagnostic performance among all parameters, and kurtosis outperformed NODDI but not DTI. Combining these parameters did not yield a statistically significant improvement in diagnostic performance. CONCLUSION: DTI, DKI, and NODDI approaches can differentiate between HGG and LGG; however, kurtosis parameters perform better and adding NODDI parameters does not improve diagnostic performance. Using multishell b-value has not led to an increase in diagnostic performance.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Imagem de Tensor de Difusão/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neuritos/patologia , Glioma/diagnóstico por imagem , Glioma/patologia , Imagem de Difusão por Ressonância Magnética/métodos
8.
Hum Brain Mapp ; 44(10): 4120-4135, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195035

RESUMO

Late-stage macular degeneration (MD) often causes retinal lesions depriving an individual of central vision, forcing them to learn to use peripheral vision for daily tasks. To compensate, many patients develop a preferred retinal locus (PRL), an area of peripheral vision used more often than equivalent regions of spared vision. Thus, associated portions of cortex experience increased use, while portions of cortex associated with the lesion are deprived of sensory input. Prior research has not well examined the degree to which structural plasticity depends on the amount of use across the visual field. Cortical thickness, neurite density, and orientation dispersion were measured at portions of cortex associated with the PRL, the retinal lesion, and a control region in participants with MD as well as age-matched, gender-matched, and education-matched controls. MD participants had significantly thinner cortex in both the cortical representation of the PRL (cPRL) and the control region, compared with controls, but no significant differences in thickness, neurite density, or orientation dispersion were found between the cPRL and the control region as functions of disease or onset. This decrease in thickness is driven by a subset of early-onset participants whose patterns of thickness, neurite density, and neurite orientation dispersion are distinct from matched control participants. These results suggest that people who develop MD earlier in adulthood may undergo more structural plasticity than those who develop it late in life.


Assuntos
Degeneração Macular , Córtex Visual , Humanos , Neuritos/patologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/patologia , Percepção Visual , Campos Visuais , Retina/patologia , Degeneração Macular/patologia
9.
Mol Psychiatry ; 28(6): 2525-2539, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37032361

RESUMO

Pediatric bipolar disorder (PBD) is a severe mood dysregulation condition that affects 0.5-1% of children and teens in the United States. It is associated with recurrent episodes of mania and depression and an increased risk of suicidality. However, the genetics and neuropathology of PBD are largely unknown. Here, we used a combinatorial family-based approach to characterize cellular, molecular, genetic, and network-level deficits associated with PBD. We recruited a PBD patient and three unaffected family members from a family with a history of psychiatric illnesses. Using resting-state functional magnetic resonance imaging (rs-fMRI), we detected altered resting-state functional connectivity in the patient as compared to an unaffected sibling. Using transcriptomic profiling of patient and control induced pluripotent stem cell (iPSC)-derived telencephalic organoids, we found aberrant signaling in the molecular pathways related to neurite outgrowth. We corroborated the presence of neurite outgrowth deficits in patient iPSC-derived cortical neurons and identified a rare homozygous loss-of-function PLXNB1 variant (c.1360C>C; p.Ser454Arg) responsible for the deficits in the patient. Expression of wild-type PLXNB1, but not the variant, rescued neurite outgrowth in patient neurons, and expression of the variant caused the neurite outgrowth deficits in cortical neurons from PlxnB1 knockout mice. These results indicate that dysregulated PLXNB1 signaling may contribute to an increased risk of PBD and other mood dysregulation-related disorders by disrupting neurite outgrowth and functional brain connectivity. Overall, this study established and validated a novel family-based combinatorial approach for studying cellular and molecular deficits in psychiatric disorders and identified dysfunctional PLXNB1 signaling and neurite outgrowth as potential risk factors for PBD.


Assuntos
Transtorno Bipolar , Camundongos , Adolescente , Animais , Humanos , Criança , Encéfalo/patologia , Neurônios/patologia , Família , Crescimento Neuronal , Neuritos/patologia
10.
Eur Radiol ; 33(5): 3671-3681, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36897347

RESUMO

OBJECTIVES: To compare the histogram features of multiple diffusion metrics in predicting the grade and cellular proliferation of meningiomas. METHODS: Diffusion spectrum imaging was performed in 122 meningiomas (30 males, 13-84 years), which were divided into 31 high-grade meningiomas (HGMs, grades 2 and 3) and 91 low-grade meningiomas (LGMs, grade 1). The histogram features of multiple diffusion metrics obtained from diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), mean apparent propagator (MAP), and neurite orientation dispersion and density imaging (NODDI) in the solid tumours were analysed. All values between the two groups were compared with the Man-Whitney U test. Logistic regression analysis was applied to predict meningioma grade. The correlation between diffusion metrics and Ki-67 index was analysed. RESULTS: The DKI_AK (axial kurtosis) maximum, DKI_AK range, MAP_RTPP (return-to-plane probability) maximum, MAP_RTPP range, NODDI_ICVF (intracellular volume fraction) range, and NODDI_ICVF maximum values were lower (p < 0.0001), whilst the DTI_MD (mean diffusivity) minimum values were higher in LGMs than those in HGMs (p < 0.001). Amongst the DTI, DKI, MAP, NODDI, and combined diffusion models, no significant differences were found in areas under the receiver operating characteristic curves (AUCs) for grading meningiomas (AUCs, 0.75, 0.75, 0.80, 0.79, and 0.86, respectively; all corrected p > 0.05, Bonferroni correction). Significant but weak positive correlations were found between the Ki-67 index and DKI, MAP, and NODDI metrics (r = 0.26-0.34, all p < 0.05). CONCLUSIONS: Whole tumour histogram analyses of the multiple diffusion metrics from four diffusion models are promising methods in grading meningiomas. The DTI model has similar diagnostic performance compared with advanced diffusion models. KEY POINTS: • Whole tumour histogram analyses of multiple diffusion models are feasible for grading meningiomas. • The DKI, MAP, and NODDI metrics are weakly associated with the Ki-67 proliferation status. • DTI has similar diagnostic performance compared with DKI, MAP, and NODDI in grading meningiomas.


Assuntos
Imagem de Tensor de Difusão , Neoplasias Meníngeas , Meningioma , Humanos , Masculino , Imagem de Tensor de Difusão/métodos , Antígeno Ki-67/metabolismo , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Meningioma/diagnóstico por imagem , Meningioma/patologia , Gradação de Tumores , Neuritos/patologia , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Modelos Biológicos , Simulação por Computador , Feminino
11.
Hum Brain Mapp ; 44(4): 1371-1388, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36264194

RESUMO

Noninvasive diffusion magnetic resonance imaging (dMRI) has been widely employed in both clinical and research settings to investigate brain tissue microstructure. Despite the evidence that dMRI-derived fractional anisotropy (FA) correlates with white matter properties, the metric is not specific. Recent studies have reported that FA is dependent on the b-value, and its origin has primarily been attributed to either the influence of microstructure or the noise-floor effect. A systematic investigation into the inter-relationship of these two effects is however still lacking. This study aims to quantify contributions of the reported differences in intra- and extra-neurite diffusivity to the observed changes in FA, in addition to the noise in measurements. We used in-vivo and post-mortem human brain imaging, as well as numerical simulations and histological validation, for this purpose. Our investigations reveal that the percentage difference of FA between b-values (pdFA) has significant positive associations with neurite density index (NDI), which is derived from in-vivo neurite orientation dispersion and density imaging (NODDI), or Bielschowsky's silver impregnation (BIEL) staining sections of fixed post-mortem human brain samples. Furthermore, such an association is found to be varied with Signal-to-Noise Ratio (SNR) level, indicating a nonlinear interaction effect between tissue microstructure and noise. Finally, a multicompartment model simulation revealed that these findings can be driven by differing diffusivities of intra- and extra-neurite compartments in tissue, with the noise-floor further amplifying the effect. In conclusion, both the differences in intra- and extra-neurite diffusivity and noise-floor effects significantly contribute to the FA difference associated with the b-value.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Anisotropia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Neuritos/patologia
12.
NMR Biomed ; 36(5): e4887, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36454009

RESUMO

High-resolution magnetic resonance imaging (MRI) affords unique image contrasts to nondestructively probe the tissue microstructure; validation of MRI findings with conventional histology is essential to better understand the MRI contrasts. However, the dramatic difference in the spatial resolution and image contrast of these two techniques impedes accurate comparison between MRI metrics and traditional histology. To better validate various MRI metrics, we acquired whole mouse brain multigradient recalled-echo and multishell diffusion MRI datasets at 25-µm isotropic resolution. The recently developed Allen Mouse Brain Common Coordinate Framework (CCFv3) provides opportunities to integrate multimodal and multiscale datasets of the whole mouse brain in a common three-dimensional (3D) space. The T2*, quantitative susceptibility mapping, diffusion tensor imaging, and neurite orientation dispersion and density imaging parameters were compared with both serial two-photon tomography images and 3D Nissl staining images in the CCFv3 at the same spatial resolution. The correlation between MRI and Nissl staining strongly depends on different metrics and different regions of the brain. Integrating different imaging modalities to the same space may substantially improve our understanding of the complexity of the brain at different scales.


Assuntos
Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Animais , Camundongos , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuritos/patologia
13.
Cereb Cortex ; 33(6): 2715-2733, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753692

RESUMO

We developed a novel method for mapping the location, surface area, thickness, and volume of frontoinsular cortex (FI) using structural and diffusion magnetic resonance imaging. FI lies in the ventral part of anterior insular cortex and is characterized by its distinctive population von Economo neurons (VENs). Functional neuroimaging studies have revealed its involvement in affective processing, and histopathology has implicated VEN loss in behavioral-variant frontotemporal dementia and chronic alcoholism; however, structural neuroimaging of FI has been relatively limited. We delineated FI by jointly modeling cortical surface geometry and its coincident diffusion microstructure parameters. We found that neurite orientation dispersion in cortical gray matter can be used to map FI in specific individuals, and the derived measures reflect a range of behavioral factors in young adults from the Human Connectome Project (N=1052). FI volume was larger in the left hemisphere than the right (31%), and the percentage volume of FI was larger in women than men (15.3%). FI volume was associated with measures of decision-making (delay discounting, substance abuse), emotion (negative intrusive thinking and perception of hostility), and social behavior (theory of mind and working memory for faces). The common denominator is that larger FI size is related to greater self-control and social awareness.


Assuntos
Córtex Cerebral , Demência Frontotemporal , Masculino , Adulto Jovem , Humanos , Feminino , Córtex Cerebral/fisiologia , Neurônios/fisiologia , Demência Frontotemporal/patologia , Córtex Insular , Neuritos/patologia , Imageamento por Ressonância Magnética
14.
Brain Struct Funct ; 228(2): 367-392, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36585970

RESUMO

Brain development follows a protracted developmental timeline with foundational processes of neurodevelopment occurring from the third trimester of gestation into the first decade of life. Defining structural maturational patterns of early brain development is a critical step in detecting divergent developmental trajectories associated with neurodevelopmental and psychiatric disorders that arise later in life. While considerable advancements have already been made in diffusion magnetic resonance imaging (dMRI) for pediatric research over the past three decades, the field of neurodevelopment is still in its infancy with remarkable scientific and clinical potential. This comprehensive review evaluates the application, findings, and limitations of advanced dMRI methods beyond diffusion tensor imaging, including diffusion kurtosis imaging (DKI), constrained spherical deconvolution (CSD), neurite orientation dispersion and density imaging (NODDI) and composite hindered and restricted model of diffusion (CHARMED) to quantify the rapid and dynamic changes supporting the underlying microstructural architectural foundations of the brain in early life.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Criança , Humanos , Imagem de Tensor de Difusão/métodos , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Neuritos/patologia , Imageamento por Ressonância Magnética , Substância Branca/patologia
15.
Clin Neuroradiol ; 33(2): 445-453, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36449040

RESUMO

PURPOSE: This study investigated brain microstructural changes in patients with amnestic mild cognitive impairment (aMCI) by retrospectively analyzing neurite orientation dispersion and density imaging (NODDI) data with machine learning algorithms. METHODS: A total of 26 aMCI patients and 24 healthy controls (HC) underwent NODDI magnetic resonance imaging (MRI) examinations. The NODDI parameters including neurite density index (NDI), orientation dispersion index (ODI), and volume fraction of isotropic water molecules (Viso) were estimated. Machine learning algorithms such as K­nearest neighbor (KNN), logistic regression (LR), random forest (RF), and support vector machine (SVM) were used to evaluate the diagnostic efficacy of NODDI parameters in predicting aMCI. The differences in the NODDI parameter values between the aMCI and HC groups were analyzed using the independent sample t­test, False discovery rate (FDR) correction was used for multiple testing. After adjusting for age, sex, and educational years, partial correlation analysis was used to evaluate the relationship between NODDI parameters and clinical cognitive status of aMCI patients. RESULTS: The NDI, ODI, and Viso values of white matter (WM) and gray matter (GM) structure templates combined with the KNN, LR, RF and SVM machine learning algorithms accomplished the discrimination between aMCI and HC groups. The NDI and ODI values decreased (p value range, < 0.001-0.042) and Viso values increased (p value range, < 0.001-0.043) in the aMCI group compared to the HCs. The NDI, ODI, and Viso values of the WM and GM structure templates with significant differences were significantly correlated with mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) scores. CONCLUSION: NODDI combined with machine learning algorithms is a promising strategy for early diagnosis of aMCI. Moreover, NODDI parameters correlated with the clinical cognitive status of aMCI patients.


Assuntos
Disfunção Cognitiva , Substância Branca , Humanos , Neuritos/patologia , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia
17.
J Magn Reson Imaging ; 57(5): 1464-1474, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36066259

RESUMO

BACKGROUND: Preoperative differentiation of glioblastoma multiforme (GBM) and solitary brain metastasis (SBM) contributes to guide neurosurgical decision-making. PURPOSE: To explore the value of histogram analysis based on neurite orientation dispersion and density imaging (NODDI) in differentiating between GBM and SBM and comparison of the diagnostic performance of two region of interest (ROI) placements. STUDY TYPE: Retrospective. POPULATION: In all, 109 patients with GBM (n = 57) or SBM (n = 52) were enrolled. FIELD STRENGTH/SEQUENCE: A 3.0 T scanners. T2 -dark-fluid sequence, contrast-enhanced T1 magnetization-prepared rapid gradient echo sequence, and NODDI. ASSESSMENT: ROIs were placed on the peritumoral edema area (ROI1) and whole tumor area (ROI2, included the cystic, necrotic, and hemorrhagic areas). Histogram parameters of each isotropic volume fraction (ISOVF), intracellular volume fraction (ICVF), and orientation dispersion index (ODI) from NODDI images for two ROIs were calculated, respectively. STATISTICAL TESTS: Mann-Whitney U test, independent t-test, chi-square test, multivariate logistic regression analysis, DeLong's test. RESULTS: For the ROI1 and ROI2, the ICVFmin and ODImean obtained the highest area under curve (AUC, AUC = 0.741 and 0.750, respectively) compared to other single parameters, and the AUC of the multivariate logistic regression model was 0.851 and 0.942, respectively. DeLong's test revealed significant difference in diagnostic performance between optimal single parameter and multivariate logistic regression model within the same ROI, and the multivariate logistic regression models between two different ROIs. DATA CONCLUSION: The performance of multivariate logistic regression model is superior to optimal single parameter in both ROIs based on NODDI histogram analysis to distinguish SBM from GBM, and the ROI placed on the whole tumor area exhibited better diagnostic performance. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Neuritos/patologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética/métodos
18.
J Neurol ; 270(1): 433-445, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36153468

RESUMO

BACKGROUND: Soma and neurite density imaging (SANDI) is a new biophysical model that incorporates soma in addition to neurite density, thus possibly providing more specific information about the complex pathological processes of multiple sclerosis (MS). PURPOSE: To discriminate the pathological abnormalities of MS white matter (WM) lesions, normal-appearing (NA) WM and cortex and to evaluate the associations among SANDI-derived measures, clinical disability, and conventional MRI variables. METHODS: Twenty healthy controls (HC) and 23 MS underwent a 3 T brain MRI. Using SANDI on diffusion-weighted sequence, the fractions of neurite (fneurite) and soma (fsoma) were assessed in WM lesions, NAWM, and cortex. RESULTS: Compared to HC WM, MS NAWM showed lower fneurite (false discovery rate [FDR]-p = 0.011). In MS patients, WM lesions showed lower fneurite and fsoma compared to both HC and MS NAWM (FDR-p < 0.001 for all). In the cortex, MS patients had lower fneurite and fsoma compared to HC (FDR-p ≤ 0.009). Compared to both HC and RRMS, PMS patients had lower fneurite in NAWM (vs HC: FDR-p < 0.001; vs RRMS: FDR-p = 0.003) and cortex (vs HC: FDR-p < 0.001; vs RRMS: p = 0.031, not surviving FDR correction), and lower cortical fsoma (vs HC: FDR-p < 0.001; vs RRMS: FDR-p = 0.009). Compared to HC, PMS also showed a higher fsoma in NAWM (FDR-p = 0.015). Fneurite and fsoma in the different brain compartments were correlated with age, phenotype, disease duration, disability, WM lesion volumes, normalized brain, cortical, and WM volumes (r from - 0.761 to 0.821, FDR-p ≤ 0.4). CONCLUSIONS: SANDI may represent a clinically relevant model to discriminate different neurodegenerative phenomena that gradually accumulate through MS disease course.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Neuritos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
19.
J Neurol ; 270(2): 810-823, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36201016

RESUMO

BACKGROUND: Pathologically specific MRI measures may elucidate in-vivo the heterogeneous processes contributing to cognitive impairment in multiple sclerosis (MS). PURPOSE: Using diffusion tensor and neurite orientation dispersion and density imaging (NODDI), we explored the contribution of focal lesions and normal-appearing (NA) tissue microstructural abnormalities to cognitive impairment in MS. METHODS: One hundred and fifty-two MS patients underwent 3 T brain MRI and a neuropsychological evaluation. Forty-eight healthy controls (HC) were also scanned. Fractional anisotropy (FA), mean diffusivity (MD), intracellular volume fraction (ICV_f) and orientation dispersion index (ODI) were assessed in cortical and white matter (WM) lesions, thalamus, NA cortex and NAWM. Predictors of cognitive impairment were identified using random forest. RESULTS: Fifty-two MS patients were cognitively impaired. Compared to cognitively preserved, impaired MS patients had higher WM lesion volume (LV), lower normalized brain volume (NBV), cortical volume (NCV), thalamic volume (NTV), and WM volume (p ≤ 0.021). They also showed lower NAWM FA, higher NAWM, NA cortex and thalamic MD, lower NAWM ICV_f, lower WM lesion ODI, and higher NAWM ODI (false discovery rate-p ≤ 0.026). Cortical lesion number and microstructural abnormalities were not significantly different. The best MRI predictors of cognitive impairment (relative importance) (out-of-bag area under the curve = 0.727) were NAWM FA (100%), NTV (96.0%), NBV (84.7%), thalamic MD (43.4%), NCV (40.6%), NA cortex MD (26.0%), WM LV (23.2%) and WM lesion ODI (17.9%). CONCLUSIONS: Our multiparametric MRI study including NODDI measures suggested that neuro-axonal damage and loss of microarchitecture integrity in focal WM lesions, NAWM, and GM contribute to cognitive impairment in MS.


Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Substância Branca , Humanos , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Neuritos/patologia , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Atrofia/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
20.
Mol Neurodegener ; 17(1): 61, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131294

RESUMO

BACKGROUND: Alzheimer's Disease (AD) affects millions globally, but therapy development is lagging. New experimental systems that monitor neuronal functions in conditions approximating the AD brain may be beneficial for identifying new therapeutic strategies. METHODS: We expose cultured neurons to aqueous-soluble human brain extract from 43 individuals across a spectrum of AD pathology. Multi-electrode arrays (MEAs) and live-cell imaging were used to assess neuronal firing and neurite integrity (NI), respectively, following treatments of rat cortical neurons (MEA) and human iPSC-derived neurons (iN) with human brain extracts. RESULTS: We observe associations between spontaneous activity and Aß42:40 levels, between neurite integrity and oligomeric Aß, and between neurite integrity and tau levels present in the brain extracts. However, these associations with Aß and tau do not fully account for the effects observed. Proteomic profiling of the brain extracts revealed additional candidates correlated with neuronal structure and activity. Neurotoxicity in MEA and NI assays was associated with proteins implicated in lysosomal storage disorders, while neuroprotection was associated with proteins of the WAVE regulatory complex controlling actin cytoskeleton dynamics. Elevated ganglioside GM2 activator (GM2A) associates with reductions in both NI and MEA activity, and cell-derived GM2A alone is sufficient to induce a loss of neurite integrity and a reduction in neuronal firing. CONCLUSIONS: The techniques and data herein introduce a system for modeling neuronal vulnerability in response to factors in the human brain and provide insights into proteins potentially contributing to AD pathogenesis.


Assuntos
Doença de Alzheimer , Neuritos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Gangliosídeo G(M2)/metabolismo , Gangliosídeos/metabolismo , Humanos , Neuritos/metabolismo , Neuritos/patologia , Neurônios/metabolismo , Proteínas/metabolismo , Proteômica , Ratos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA